即抽丝法、吹丝法和纺丝法。陶瓷纤维纸中的陶瓷纤维常用的是吹丝法。吹丝法是将熔融状的混合原料,在惰性气体的压力下以细流状态喷向高速旋转的圆盘之周边表面。在圆盘高速转动的拉力下,将其纺成细丝缠绕在圆盘上,而得到几微米的陶瓷纤维。
用于抄造陶瓷纤维纸的陶瓷纤维,必须经过净化处理把不合格的非纤维状的陶瓷颗粒除去。然后采用打浆机对其纤维长度进行适当调整,务必使纤维的长宽比等于10以上。在流送过程中应保持陶瓷纤维呈悬浮、分散状态。可在常规的长网、圆网、斜网等造纸机上抄造完成。
根据产品的用途,抄造陶瓷纤维纸前可向浆料中加入黏合剂,也可不加。不过为了满足工业生产所需求的强度,目前生产的陶瓷纤维纸中均已加入高温黏合剂。
陶瓷纤维广泛应用于各类热工窑炉的绝热耐高温材料,由于其容重大大低于其他耐火材料,因而蓄热很小,隔热效果明显,作为炉衬材料可大大降低热工窑炉的能源损耗,在节能方面为热工窑炉带来了一场革命。另一方面它的应用技术和方法对热工窑炉的砌筑同样带来了一场革命。
目前,“电阻法喷吹成纤、干法针刺制毯”和“电阻法甩丝成纤、干法针刺制毯”仍为国际上陶瓷纤维生产的两种典型的工艺技术。由于陶瓷纤维的应用范围越来越扩大,以及随着高新技术的发展,要求陶瓷纤维产品向功能性方向发展,以满足特定领域内所需的专用功能性产品,如使产品具有优良的耐高温性能、机械力学性能、柔韧性能和可纺性能等。
在制造方法方面,熔融法与化学法同时并存且同步发展,以适应不同品种用途的需要。熔融法常用于生产非晶质纤维,其技术含量低,生产成本低,产品的应用量大面广,主要用于工业窑炉、加热装置耐火、隔热应用领域中的基础材料。化学法用于生产多晶晶质纤维,该法技术含量高,生产成本也高,附加值高,但产品仍较少,主要用于1300℃以上高温工业窑炉的耐火隔热及航天、航空、核能等尖端技术领域。
各种陶瓷纤维模块是采用具有优良性能的对应材质的纤维针刺毯按纤维组块结构、尺寸、由专业技工,用组块加工专用设备制作而成,为保证壁衬砌筑完成后组块之问相互挤压形成无缝隙紧密的保温整体。在制作过程中均保持一定压缩量,产品配套锚固系统可与窑炉壳体牢固连接、尺寸精确、安装简便。加快了炉衬施工速度,减轻窑炉重量,大幅度提高窑炉耐火绝热性能。
陶瓷膜与有机聚合物膜相比具有许多独特的优点,如耐高温、耐化学腐蚀、机械强度高、孔径均匀分布窄、微观结构可控、使用寿命长等,因而可满足特别苛刻的使用要求,在石油化工、化学工业、冶金工业、食品工业、环境工程、新能源等领域有着广泛的应用前景,正日益受到重视。但实用的陶瓷膜一般为非对称结构,膜制备工艺过程复杂,制造周期长,成本高。另外,商品化陶瓷膜一般采用多通道管式构型,膜管壁厚,膜的装填密度低,导致单位体积有效过滤面积小和分离效率低。
近年来,新型中空纤维构型陶瓷膜受到广泛关注,中空纤维陶瓷膜除具有传统的陶瓷膜本身优点以外,还具有装填密度大、单位体积膜有效分离面积大、膜壁薄、渗透通量高和节省原料、易于实现分离设备小型化等优点。新型中空纤维构型陶瓷膜的应用可望大大提高陶瓷膜分离性能。中空纤维陶瓷膜由于其独特的性能和结构特点,在用于废水(气)处理的无机分离膜、固体氧化物陶瓷膜燃料电池、微通道反应器、催化剂载体等领域的应用正受到越来越多的关注。
做企业最怕产品卖不出去,企业没有知名度。现在是互联网时代,酒香不怕巷子深的时代已经过去了。想做好销售,请免费注册爱客商务网会员,可以免费发布产品销售信息、行业展会信息、招商加盟信息,还能发布企业新闻、新品速递等广告文章。爱客商务网旗下还有十几家垂直商业网站,如塑料商务网,化工商务网,仪器商务网等。注册一个账号就可以在十多个平台发布商业信息,永久展示。同行都在行动,您可千万别忘了哦。
新型中空纤维陶瓷膜由于具有装填密度大、单位体积膜有效分离面积大、膜壁薄、渗透通量高和节省原料等独特优点而受到广泛关注,在用于多孔和致密陶瓷分离膜、固体氧化物燃料电池、微通道反应器、催化剂载体等方面都有着潜在的应用前景。在概括中空纤维陶瓷膜特点的基础上,综述了中空纤维陶瓷膜的制备方法研究进展,着重分析比较了不同制备方法的优缺点。将相转化法应用于中空纤维陶瓷膜的制备,可实现通过一步成型制造具有自支撑非对称结构的复合陶瓷膜,有利于提高膜的渗透通量、简化膜制备工艺和显著降低制造成本。
新型中空纤维陶瓷膜除具有陶瓷膜本身优点以外,与传统多通道或平板构型的膜相比,还具有以下突出优点:装填密度高,单位体积膜有效过滤面积非常大,易于实现分离设备小型化。中空纤维陶瓷膜分离效率将比传统构型陶瓷膜有显著提高。中空纤维膜管壁薄,因而可减小膜渗透阻力和缩短渗透路径,提高流体渗透通量。此外,膜壁厚度远小于传统的管式和平板陶瓷膜,可大大节省微粉原料。中空纤维膜可根据实际应用需要采取内压式或外压式两种不同过滤方式。
模板法是以有机聚合物中空纤维或活化碳纤维为模板先将经过预处理的模板浸入预先制备的稳定氧化物先驱体溶胶中,通过浸渍涂覆法,在纤维模板表面形成一层凝胶层,然后经干燥和高温烧成获得中空纤维陶瓷膜。采用有机模板法制备中空纤维陶瓷膜时,根据模板微观结构的不同,可形成对称或非对称结构中空纤维陶瓷膜。可以预见,非对称结构的形成将有助于降低膜的渗透阻力和提高膜渗透性。
但模板法制备中空纤维陶瓷膜,需要预先采用金属醇盐制备稳定的聚合物溶胶,并往往需要经多次涂覆才能获得合适厚度的凝胶层,工艺过程复杂,制备的膜易开裂和变形,不适合大规模生产,主要用于实验室中空纤维膜制备。陶瓷纤维产品质量主要取决于原料的质量,一些工业发达国家的陶瓷纤维生产企业都是以高纯度合成粉料为原料,使熔融法生产的非晶质纤维化学组成中的Fe2O3,Na2O,CaO等有害杂质含量低于1%,从而提高了纤维板的质量和耐热性能。一般是对现有的工艺设备和生产工艺进行改造与完善,生产功能性产品,扩大应用领域。新产品的开发主要有:晶质氧化铝连续长纤维、复合材料生产用的新型纤维增强体和纳米结构晶质氧化铝连续长纤维的开发等。
近些年,由于能源价格不断上涨,燃料成本将会成为扼制陶瓷业发展的瓶颈,节能愈加重要。人们对窑炉热损失愈来愈关心,有的直接在原有耐火内衬表面加贴一层耐火陶瓷纤维以提高热效率。在加贴前必须将窑壁上明显的裂纹或剥落部位修复好。不过隔热耐火砖与耐火纤维也不能任意滥用。迄今为止如碱性吹氧炼钢炉、水泥回转窑等内衬,由于高温化学侵蚀严重,都暂时不能用纤维作内衬。
对于连续加热设备如陶瓷隧道窑,早已实现了采用耐火陶瓷纤维用作连续加热设备的内衬。据报道,快速推板窑与隧道窑中采用耐火陶瓷纤维节能效果都很显著。尤其是超高温加热,如烧成温度在1538~1649℃的窑炉中,采用耐火纤维的节能效果最佳。目前,欧美及日本的陶瓷窑炉设备全部采用陶瓷纤维内衬。不久前日本将燃气隧道窑分解为诸如车厢结构进行分节制造、然后再运抵瓷厂施工现场组装,这一切都是由于采用陶瓷纤维材料,大大节省了窑炉造价,更简便的缘故。从材质改型方面推进陶瓷纤维制品节能效果的研究也正在进行中。
陶瓷纤维虽然为高温工业领域的绝热耐火起着重要作用,但也存在很大的生产弊端,尤其是它具有可吸人性,对环境及人体有一定的危害,国外一些企业加强了对非晶质陶瓷纤维的限制使用。目前,一种生物溶解性非晶质陶瓷纤维在绝热耐火材料市场出现,这种超级纤维属无污染的环境友好型材料。陶瓷纤维最初是作为耐火保温材料而发展起来的。由于其纤细的形状,逐渐作为过滤材料而得到新的应用,陶瓷纤维过滤器依赖于陶瓷纤维的发展和应用。高温烟气净化已成为材料、冶金、化工、电力等行业实现“节能减排”的一个重要技术攻关课题。许多工业烟气属于高温烟气,如冶炼、焚烧、火力发电、燃煤锅炉、工业炉窑、余热回收利用等。采用传统的布袋除尘器净化高温烟尘,通常要将烟气冷却至250℃以下并控制在露点温度以上。因此,采取降温方法净化高温烟气势必造成设备、运行费用增加和热能浪费。
陶瓷纤维作为过滤器普遍强度较低发展低成本高强度的连续纤维增强陶瓷纤维过滤器是今后的发展方向。陶瓷纤维过滤器由于其优良的特性将会在高温烟气过滤等方面发挥越来越重要的作用,具有脱硫、脱硝、烟气催化转化等功能的陶瓷纤维过滤材料将是热气体净化材料的58发展方向。
陶瓷纤维过滤在我国高温烟气净化方面还没有起步,但近几年来的应用情况表明,在世界范围内陶瓷过滤器用量呈现出高增长趋势。陶瓷过滤器最突出的应用是燃煤发电领域的烟尘净化。最大限度地提高发电效率和减少对大气造成的污染已成为世界各国,特别是中国这样一个燃煤大国的主要任务。通过循环流化床(CFBC)发电、煤气化(IGCC)发电及其组合式发电,可以大大提高发电效率,达到节能减排的目的。煤气化发电不同于传统的蒸汽机发电过程。它是将煤加热气化后,在煤气进入燃气式发电机之前,需要净化到高纯度。大多数发电厂将进入气燃机的允许含尘浓度限制在5mg/m。以下,理论上最好低于1mg/m。除尘系统的工作温度常在350~1000℃、压力为1~2.5MPa。因此,要在如此高温、高压下达到如此高的净化效果,陶瓷过滤器必然成为第一选择。
可以预见,为实现节能减排的目标,高温烟气陶瓷过滤技术在中国的推广应用已为期不远。新型陶瓷纤维是近年发展起来的高技术功能纤维。除了防紫外线纤维、蓄热保温纤维和抗菌防臭纤维外,还有防中子纤维、导电纤维、磁性纤维等,陶瓷微粉在纤维中的应用范围也十分广阔。
原标题:陶瓷纤维的制造工艺及应用前景
郑重声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如有侵权行为,请第一时间联系我们修改或删除,多谢。免责声明:本网站所有信息仅供参考,不做交易和服务的根据,如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任。如有侵权行为,请第一时间联系我们修改或删除,多谢。